
COMPUTER	34

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/10/$26.00 © 2010 IEEE	

increased expertise causes them to seek more operational
options.

All these drivers can lead to specific technical problems
for embedded systems:

•	 Finely crafted and optimized designs must be main-
tained and evolved with great care—mass-produced
embedded systems, for example, are often optimized
to minimize resource consumption, and evolutionary
modifications must avoid violating this property.

•	 Safety- and mission-critical embedded systems re-
quire system verification in some form, and this can
be a bottleneck—the current practice of complete re-
verification is very expensive.

•	 The evolution process itself must be optimized be-
cause it’s typically performed under a tight deadline;
moreover, any change must be minimal, yet maxi-
mally effective, to meet the previous two challenges.

•	 Because embedded systems are often deployed in
critical applications, they must evolve in vivo—they
can’t go offline for a long time.

These challenges can best be met through a combination
of techniques and technologies. We discuss evolution on
different timescales and in the context of user processes,
load-time verification, and tests for checking system cor-

E
mbedded systems span a wide range of domains,
from household applications in appliances,
entertainment devices, and vehicles to critical
applications in patient-monitoring systems,
industrial automation, and command-and-

control systems. Several specific drivers can shape an
embedded system’s evolution. Many consumer-oriented
systems, for example, undergo rapid changes because
of market pressures to come up with new products or
improve capabilities in existing ones. Another driver
is hardware obsolescence—for example, a particular
hardware component might need replacement, or new
special-purpose hardware might replace software func-
tions. Existing platforms might also need additional
functions: if an embedded system vendor identifies a novel
business opportunity, it might have to update existing
and deployed systems to capitalize on that opportunity.
Finally, users often invent new ways to manipulate exist-
ing systems, either to meet changing needs or because

Integrated and embedded systems have be-
come an invisible yet crucial part of our
daily lives, making their continuous and
trouble-free evolution of great importance.

Gabor Karsai, Vanderbilt University

Fabio Massacci, University of Trento, Italy

Leon J. Osterweil, University of Massachusetts Amherst

Ina Schieferdecker, Fraunhofer FOKUS and Technical University Berlin, Germany

EVOLVING
EMBEDDED
SYSTEMS

35MAY 2010

The key word is evolution: making
the system better to satisfy some
optimization function.

rectness. Our goal is to give a broad overview of relevant
embedded system issues and some potential solutions.

EVOLUTIONARY TIMESCALES
System evolution can occur on multiple timescales.

Design time
Design-time evolution (DTE) offers many potential

subjects for evolution. First, system design can evolve
because of changes in requirements, the need for im-
provements, or the need to fix deficiencies. Second,
system implementation can evolve—sometimes in con-
cert with design, sometimes independently. Third, the
tools used to create and analyze the design and imple-
mentation can evolve, although at a price: they might
force developers to modify their designs or implementa-
tions to comply with new versions of tools. In extreme
cases, the design or even the implementation language
can change, triggering the problem of carrying forward
existing engineering artifacts.

Tool support can help address DTE, but although re-
search tools are available, industrial-quality tools aren’t
quite there yet. One key problem is the need to preserve or
evolve design abstractions that may or may not be explicit
in a design and are very rarely explicit in the implementa-
tion. If designs are represented as models in, for instance,
UML, then transformation-based approaches could be
useful.1 Model-based, generative approaches offer an
opportunity to facilitate evolution because models can
typically be manipulated programmatically through an
API and are on a much higher level of abstraction than
code. However, designers still need tool-supported, higher-
order techniques such as model transformations to express
their intent. Many modern development environments
now offer assistance with code refactoring, but design
refactoring support is often lacking.

There are serious challenges in evolving the design and
implementation of embedded systems—careless modifica-
tions can lead to major rework. One problem stems from
the embedded code’s emergent, nonfunctional properties:
memory footprint, execution time, and stack usage are all
difficult to estimate directly from the design. Thus, when
the design or implementation changes, developers must
determine these emergent properties (possibly through
simulation and testing), and if they’re unsatisfactory, revise
the changes, which can lead to extensive and expensive
iterations.

Another problem comes from the need to verify the
embedded code that actually runs on the execution plat-
form. Verifying code is difficult for a regular system, but
for an embedded one it’s even more complex because the
code doesn’t run in isolation, but on an execution platform
whose properties must be explicitly known. Evolving an

embedded system also means evolving the “proofs” about
its correctness.

Load time
Load-time evolution (LTE) occurs when a system evolves

in the field but is not in active operation. It is sometimes
viewed as an operator-induced change in a system’s con-
figuration, but the change could be quite complex and lead
to a new, “evolved” system. For instance, it’s now custom-
ary for mobile phone users to download new applications
that can connect to a GPS satellite and send their current
geographical coordinates over the Internet to a social net-
working site: a major “evolution” in the phone’s software.

The main question of LTE in embedded systems is again
verification: how to prove that the evolved system is cor-
rect. This is important because fixing embedded systems
in the field could be quite expensive. Another relevant
question is how the evolution happens if it is user-driven
instead of vendor-driven. Users aren’t interested in low-
level changes—they want specific system features and
capabilities. An “LTE agent,” or built-in system tool that
translates user preferences and system constraints into
low-level evolutionary changes on the system, could be a
solution here.

Runtime
Runtime evolution (RTE) means changing the system

while it is in active use. The evolutionary process is trig-
gered by a system-made observation, possibly involving
reflection and reasoning on the system’s behalf. Few such
systems exist today, but autonomic computing and au-
tonomous vehicles offer some examples. The key word is
evolution: making the system better to satisfy some op-
timization function. RTE is a deliberated and reasoned
choice for change made by the system itself toward a new
mode that improves it. What the system evolves to isn’t
necessarily predefined; rather, it’s computed on the fly
according to the current system state and environment.

Naturally, engineering RTE in systems is challenging,
and the problems are well-known: What is the RTE’s ex-
pected and allowed scope? How does the system detect
the need for evolution? How does the system reason
about what to evolve to? How is the actual evolution ex-
ecuted? How does the system verify the evolutionary
step? What’s a human user’s role in the process? These

COVER FE ATURE

COMPUTER	36

questions are especially acute for embedded systems
because of their often critical, resource-constrained,
and closed nature. Perhaps the biggest challenge of all
is how to ensure the dependability of embedded systems
that evolve at runtime. Some recent research roadmaps
and early results come primarily from the area of self-
adaptive systems.2

CONCURRENT EVOLUTION OF
SYSTEMS AND PROCESSES

Any system in use today will experience pressure to
evolve by the very fact of its being in use, which implies
that it meets—at least to some extent—real-world needs.
This is particularly true for embedded systems because

their very definition implies that they participate in real-
world activities and processes. Most successful processes
tend to allocate rote and mechanical tasks to software
components in embedded systems, leaving humans to
do relatively more creative work that requires insight and
intelligence. Thus, successful embedded systems typically
tend to grow in scope and power by taking on increasingly
large quantities of rote and mechanical work. But in so
doing, it isn’t unusual for new mechanical and software ca-
pabilities to facilitate new exercises of human intelligence
and creativity. Thus begins a cycle: real-world processes
levy strong requirements on the embedded systems that
they use, and as the embedded software components in
these systems meet these requirements, they create pres-
sures on the processes themselves to absorb more tasks.
We can expect this cycle to continue indefinitely, as long
as the embedded system and its software components
experience actual use.

A key challenge for embedded systems is to continually
provide satisfactory services, even as they strive to provide
even more satisfactory capabilities. To do this, embedded
systems and the software components that they contain
must always demonstrably respond to an understood and
agreed-upon set of requirements. Typically, these require-
ments are derived principally from the processes in which
they’re used. Thus, for example, a surgical process can
impose specific requirements on the behaviors of doctors
and nurses, but also on devices such as infusion pumps
that are used in the process. The requirements imposed on

the infusion pump itself are passed down to the software
embedded in the pump as well.

Ultimately, embedded systems and their software
components can’t be considered to be absolutely correct
or satisfactory. Such systems can only be judged to be
correct or satisfactory relative to how well they meet the
requirements imposed on them by the processes using
them. An embedded system’s participation in a process
can also change expectations and desires. For example,
using a powerful vote-recording device in an election pro-
cess might cause poll workers to decide that they would
indeed like the device to check for duplicate voters, even
though the current process mandates that they perform
this task themselves. However, such desires shouldn’t be
translated into actual process changes unless all partic-
ipants’ behaviors have changed to conform to the new
process requirements. Thus, poll workers shouldn’t stop
performing manual checks to meet stronger security re-
quirements—at least not until software embedded in the
vote-recording device can address this requirement.

The need to synchronize process participant behavior
with process requirements must focus attention on how
to determine consistency. Technical approaches such as
model checking3,4 have proven to be effective in demon-
strating the consistency (or lack thereof) of bodies of code
or design with certain kinds of required properties. What’s
missing is a way to take process requirements and derive
from them requirements for process participant behavior.
Rigorous process definitions can best address this need.
Experience with the Little-JIL language5 suggests that this
is quite feasible, although a wide range of other languages
could also serve as effective bases for rigorously defin-
ing processes. The next step is for technologies to help
take such definitions and derive requirements on pro-
cess participant behavior from them. These requirements
can then be used as the basis for verifying and testing
embedded software. Approaches such as assume-guar-
antee-reasoning6 and model-carrying code7 (or its modern
variants8) offer some promise of effectively supporting
this capability.

VERIFICATION FOR LOAD-TIME EVOLUTION
A successful process that uses embedded systems can

drive an evolutionary change, but the processes themselves
shouldn’t change until it’s safe for them to do so. For ex-
ample, the success of applications running on smart cards
has led directly to a desire for smarter cards on which more
than one application can run. Owners of different trust
domains—banking, transportation, healthcare, telecom-
munications, and so on—want just one card on which they
can load and update their applications asynchronously
and independently from one another. Yet this change in
process requirements also changes the requirements for
the installation process. In addition to independent up-

Evolving embedded systems requires
a careful combination of verification
and testing methods for development,
load, and runtime evolution. For
efficient online verification and
validation, trusted and untrusted
software is to be treated separately.

37MAY 2010

dates, the different owners want
to ensure that no unwanted infor-
mation flows between the various
applications. If it were possible
to install all applications at once
before distributing the card to the
public, many techniques would
be available to check information
flow.3,4 Unfortunately, business
users want asynchronous updates.

What remains out of reach is
the combination of deploying new
applications on a smart card once
it’s in the field and keeping the se-
curity certification. This calls for a
costly manual review: developers
must prove that all possible card
evolutions are security-neutral so
that their formal proof of com-
pliance with Common Criteria
is still valid and doesn’t require
a new certificate. The natural
consequence is that no certified
multimarket sector smart cards
currently exist in the field, although both the GlobalPlat-
form and Java Card specifications support them.

An emerging solution to this problem is the use of
verification techniques to support LTE—that is, when
the software is updated on a device already in the field.
Sekar and colleagues suggested this basic idea when
they introduced the notion of model-carrying code7: an
application carries with itself a model to be verified at
runtime. Unfortunately, this concept hasn’t progressed
because of significant limitations in the proposed
model—for instance, it wasn’t possible even to state poli-
cies such as “you should only connect to URLs starting
with https://.”

The Security-by-Contract framework9 developed within
the European S3MS project (www.s3ms.org) has shown
concrete realization of the idea of complementing load-
time and runtime checking for mobile phones running
.NET and Java by using very expressive policies.8 US re-
searchers later ported the same approach to Google’s
Android platform.10 The basic idea behind Security-by-
Contract is that before loading software updates on the
device, we extract the software’s security-relevant behavior
and compare it against our policy. If this behavior is ac-
ceptable, we load the software; if not, we can decide to
use online monitoring techniques to make sure the soft-
ware doesn’t misbehave. This won’t generate too much
overhead, but in some cases it might not be feasible for
resource-limited devices.

Figure 1 shows the basic intuitive workflow behind Se-
curity-by-Contract. In the simplest mode, the embedded or

mobile device has just downloaded some new code that al-
legedly provides some desired functionality. How to check
that it isn’t harmful? We’re at the beginning of the process
in Figure 2; an untrusted code has been downloaded. We
first extract the application contract Claim using Con-
tractExtractor on the trusted part. At this point, we’re
interested in extracting security-relevant behaviors via
data-, control-, and information-flow analysis11 or from
the application’s manifest.10 We then check whether this
result matches the security policy Policy using Sim-
ulationChecker.9 If the simulation succeeds, we can
execute the code without further ado; otherwise, we use
Rewriter, which gives the ready-to-be-executed result
SafeCode.8 Of course, Rewriter might introduce some
overhead that, on embedded devices, might not be compu-
tationally acceptable. If the match with the policy is only
partial, we can optimize the enforcement mechanism by
using Optimizer, which gives the result OptPolicy—this
contains only the bits of policy with which the contract
wasn’t compliant.

Of course, this approach assumes that everything
can be done on the trusted side of the world—namely,
on the embedded system itself. However, not all em-
bedded systems have the same computational power:
we can do some elementary checking of information
flows on a smart card11 and full automata verification
on a mobile phone.8 In many cases, we must trade off
trustworthiness for computational power by deciding
which operation the device can do by itself and on which
operations it must rely for external help. At the extreme

Match policy

Digital signature or formal proof
can be obtained by
• Certi�cation process and signature
• Formal methods with proof generation
• Synthesized proof by certi�ed inline
 monitor in the code

Load-Time Evolution

Noncompliant
code

Not compliant
code

Compliant
wrapping

Platform
contract

Compliant
codeCode

Check evidence

Load code

Contract Trusted
contract

Code

If either
fails

Run at your
own risk!

Inline policy

Run without
overhead

Run with overhead

Evidence of
compliance of

code with
contract

Figure 1. Security-by-Contract for load-time execution. We must follow specific steps
to ensure that the code downloaded to a mobile or embedded device isn’t harmful.

COVER FE ATURE

COMPUTER	38

end of the spectrum, as Figure 2 shows, we move most
of the components out of the trusted domain for the
simple reason that the trusted domain—the embedded
system—doesn’t have enough computing power.

After running ContractExtractor, we check the ap-
plication contract Claim against the application Code
using ClaimChecker. If Code doesn’t comply with Claim,
then we reject Code. However, rejection might be too re-
strictive, so another similar option is to directly deploy
the Policy object in charge of monitoring Code by using
Rewriter, which gives the result SafeCode. By using
load-time verification, we can thus overcome the limi-
tation that certification imposes on the business model
and achieve asynchronous evolution while guaranteeing
security. Unfortunately, this approach might be too costly
if we don’t need to actually ensure that nothing bad ever
happens with regard to safety and security, but we’re sat-
isfied that something good can possibly happen such as
liveness, and that the most blatant violations aren’t pos-
sible. In this setting, LTE verification might be effectively
replaced by testing the embedded system for the desired
behavior.

EVOLVING TESTS
Testing is the most widely used technique for evaluat-

ing a software-based system in its target environment:
developers typically don’t generate systems completely—a
thorough model-based design process ultimately produces
the system with all its ingredients in a formally verified

chain of transformations—or formally checks systems in a
way that completely verifies both system and environment.

DTE tests are fairly straightforward. They include re-
tests for bug fixes, regression tests for modifications of
existing functionalities, new tests for system extensions,
and modified or new tests when environment changes
affect the system itself. LTE and RTE tests are more dif-
ficult to define and perform. For LTE, when the system
evolves offline, the necessary “testware”—test experts,
environment, tools, and so on—is typically unavailable,
so even lightweight tests for major system functionalities
are hard to execute. One approach is to offer remote test
capabilities12 that enable testing an evolved system from a
remote site automatically. This is an established method
in other engineering disciplines such as automotive or
industrial automation and could be adopted for software-
intensive embedded systems as well.

An online setting is challenging because the tests aren’t
only remote but they also must evaluate the system in
its target environment, which risks corrupting or dam-
aging the system itself. However, testing must occur in
a controlled environment to make the tests repeatable
and stable in their results. The control typically includes
setting the system’s states and its environmental com-
ponents, which generally isn’t possible, necessitating a
mixture of explicit control and passive observation (and
deduction) instead. Such an approach helps minimize the
impact on the running system. On the other hand, system
functionalities must be elaborated as much as needed by
stimulating the system in addition to its productive use:
the system is stimulated with selected inputs, messages,
operation calls, and so forth to activate system reactions
that exhibit the functionality under consideration. The
contradictory goals of minimal impact and explicit setting
and stimuli are difficult to achieve, but approaches for
built-in tests13 provide some initial solutions.

Online tests require minimal functional interference
with the running system and with other connected sys-
tems to avoid functional outages, and minimal resource
consumption to avoid performance degradation. They
allow systems to test themselves for constraints on their

•	 environment, whether it follows the environmental
assumptions for which the system is built;

•	 configurations, whether the system is used in a setting
for which it’s constructed;

•	 usage scenarios, whether the system is used according
to envisaged scenarios; and

•	 their own reactions, whether the reactions are outside
of expected ranges.

Like LTE tests, RTE tests need to be online, but they
also must be able to dynamically adapt to system
changes during runtime. While LTE tests are rather

Security policy

Application contract

Optimizer

Untrusted code

Contract extractor

Simulation checker

Optimized security policy

Fail

Rewriter

 Inlined application code

Trusted Untrusted

Claim checker

Claim checker

 Execute

Reject

Fail

Reject
Fail

Figure 2. Load-time evaluation with trusted checking and
untrusted computing. When the device doesn’t have enough
computational power, we shift costly computation to
untrusted parties—checking their results is easier.

39MAY 2010

static because possible system changes are predeter-
mined, RTE tests must dynamically evolve whenever
the system evolves. Hence, RTE tests require supervi-
sory support to detect system changes during runtime
and test adaptation support to enable changes to the
tests accordingly.

Whenever tests identify faults, a supervisory system
should also offer corrective means to adjust the system
or its configuration where needed. Such a closed control
loop between system, tests, and the evolutions thereof
isn’t easy to handle, especially because errors detected
during testing can have their causes in the tests, in the
system’s requirements or specifications, or in the system
itself. Before claiming the system to be faulty, we must rule
out the other two options.

Using two different models for systems and tests
might be a solution14: separate test models help us reason
about systems and their tests on an abstract level, verify
that tests are semantically correct with regard to the
constraints defined by the system model, and derive
executable tests by using an automated test execution
platform. For evolving systems, the coordinated evolution
of system models and test models is a challenge in itself:
both must be synchronized, that is, consistent with regard
to the constraints they impose. Approaches to model-
based testing15 provide some initial solutions for deriving
tests on the fly when system models change. A delta ap-
proach, typically used in software debugging,16 could also
point a way forward.

In addition to functional tests that check a system’s
principal features and functionalities, nonfunctional
tests can be enhanced for evolving systems, including
tests for robustness to check that the system reacts safely
in case of unexpected inputs or usage scenarios from the
environment, for performance to check that it reacts as
timely as needed, for scalability to check that it keeps
its performance under an increasing load, and for secu-
rity to check that it can withstand attacks. As an initial
attempt to meet these challenges, we’ve developed an
approach for automated performance and scalability
tests and for automated test generation for embedded
systems.17 We’re also developing a generic approach for
the specification of reusable “X-in the loop” tests based
on the well-established modeling and testing technolo-
gies Matlab/Simulink and TTCN-3.18

E
mbedded systems pose special challenges
to system evolution: they’re embedded in a
changing environment, often interacting with
evolving processes of human organizations, and
thus must be verified because of their critical

nature. Complicating the situation, the analyses and test-
ing regimens used to verify them must evolve as well.

Both software engineering research and industrial prac-
tice need to improve to address these problems. While
admittedly underemphasized in software engineering
education, system evolution is crucial, and the challenges
discussed here will be addressed by improving on the
initial results we presented.

Acknowledgments
This work was in part sponsored by DARPA, under its Software
Producibility Program; the US National Science Foundation,
under award numbers CCR-0205575, CCR-0427071, and
IIS-0705772; and the EU, under the projects EU-FP7-FET-IP-
SecureChange and EU-FP7-IST-IP-MASTER. Any opinions,
findings, and conclusions or recommendations are those of
the authors and don’t necessarily reflect the views of DARPA,
the EU Commission, the US National Science Foundation, or
the US government.

References
	 1.	 T. Levendovszky and G. Karsai, “An Active Pattern Infra-

structure for Domain-Specific Languages,” to appear in
Electronic Comm. EASST, 2010; http://journal.ub.tu-berlin.
de/index.php/eceasst/index.

	 2.	 B.H.C. Cheng et al., “Software Engineering for Self-Adap-
tive Systems: A Research Roadmap,” Software Eng. for
Self-Adaptive Systems, LNCS 5525, Springer, 2009, pp. 1-26.

	 3.	 P. Bieber et al., “Checking Secure Interactions of Smart
Card Applets: Extended Version,” J. Computer Security, vol.
10, no. 4, 2002, pp. 369-398.

	 4.	 E. Hubbers, M. Oostdijk, and E. Poll, “From Finite State
Machines to Provably Correct Java Card Applets,” Proc. IFIP
TC11 18th Int’l Conf. Information Security (SEC 03), Kluwer
Publishers, 2003, pp. 465-470.

	 5.	 B. Chen et al., “Analyzing Medical Processes,” Proc. 30th
Int’l Conf. Software Eng. (ICSE 08), ACM Press, 2008, pp.
623-632.

	 6.	 J.M. Cobleigh, G.S. Avrunin, and L.A. Clarke, “Breaking Up
Is Hard to Do: An Evaluation of Automated Assume-Guar-
antee Reasoning,” ACM Trans. Software Eng. Methodologies,
vol. 17, no. 2, 2008, pp. 1-52.

	 7.	 R. Sekar et al., “Model-Carrying Code: A Practical Ap-
proach for Safe Execution of Untrusted Applications,” ACM
Symp. Operating Systems Principles (SOSP 03), ACM Press,
2003, pp. 15-28.

	 8.	 L. Desmet et al., “Security-by-Contract on the .NET Plat-
form,” Information Security Technical Report, vol. 13, no.
1, 2008, pp. 25-32.

	 9.	 N. Dragoni et al., “Security-by-Contract: Toward a Se-
mantics for Digital Signatures on Mobile Code,” Proc.
4th European PKI Workshop (EuroPKI 07), LNCS 4582,
Springer, 2007, pp. 297-312.

	10.	 W. Enck, M. Ongtang, and P. McDaniel, “On Lightweight
Mobile Phone Application Certification,” Proc. 16th ACM
Conf. Computer and Communications Security (CCS 09),
ACM Press, 2009, pp. 235-245.

	11.	 D. Ghindici, G. Grimaud, and I. Simplot-Ryl, “An Informa-
tion Flow Verifier for Small Embedded Systems,” Proc.
Int’l Workshop Information Security Theory and Practices
(WISTP 07), LNCS 4462, Springer, 2007, pp. 189-201.

—George Orwell, “Why I Write” (1947)

All writers are vain,
sel� sh and lazy.

(except ours!)

“
”

The IEEE Computer Society Press is currently seeking authors.
The CS Press publishes, promotes, and distributes a wide
variety of authoritative computer science and engineering
texts. It offers authors the prestige of the IEEE Computer
Society imprint, combined with the worldwide sales and
marketing power of our partner, the international scientifi c
and technical publisher Wiley & Sons.

For more information contact Kate Guillemette,
Product Development Editor, at kguillemette@computer.org.

www.computer.org/cspress

COVER FE ATURE

COMPUTER	40

	12.	 P.H. Deussen, “Supervision of Autonomic Systems,” Int’l
Trans. Systems Science and Applications, vol. 2, no. 1, 2006,
pp. 105-110.

	13.	 H.-G. Gross, I. Schieferdecker, and G. Din, “Model-Based
Built-In Tests,” Electronic Notes in Theoretical Computer
Science, vol. 111, 2005, pp. 161-182.

	14.	 P. Baker et al., Model-Driven Testing: Using the UML Testing
Profile, Springer, 2007.

	15.	 L. Frantzen, J. Tretmans, and T.A.C. Willemse, “A Symbolic
Framework for Model-Based Testing,” Formal Approaches
to Software Testing and Runtime Verification, LNCS 4262,
Springer, 2006, pp. 40-54.

	16.	 A. Zeller, “Debugging Debugging: ACM Sigsoft Impact
Paper Award Keynote,” Proc. 7th Joint Meeting of the Eu-
ropean Software Eng. Conf. and the ACM SIGSOFT Symp.
Foundations of Software Eng. (ESEC-FSE 07), ACM Press,
2009, pp. 263-264.

	17.	 J. Zander-Nowicka, X. Xiong, and I. Schieferdecker, “Sys-
tematic Test Data Generation for Embedded Software,”
Proc. Software Eng. Research and Practice (SERP 08), vol.
1, CSREA Press, 2008, pp. 164-170.

	18.	 J. Grossmann, D.A. Serbanescu, and I. Schieferdecker,
“Testing Embedded Real Time Systems with TTCN-3,”
Proc. 2009 Int’l Conf. Software Testing Verification and
Validation (ICST 09), IEEE CS Press, 2009, pp. 81-90.

Gabor Karsai is a professor of electrical engineering and
computer science at Vanderbilt University and a senior
research scientist in its Institute for Software-Integrated
Systems. His research is in model-integrated computing.
Karsai received a PhD in electrical engineering from Van-
derbilt University. He’s a member of the IEEE Computer
Society. Contact him at gabor.karsai@vanderbilt.edu.

Fabio Massacci is a professor of computer security at the
University of Trento, Italy. His research interests are in se-
curity requirements engineering and security verification
for mobile systems. Massacci received a PhD in computer
science and engineering from Sapienza University of Rome,
Italy. He is a member of the ACM, IEEE, and ISACA. Contact
him at fabio.massaci@unitn.it.

Leon Osterweil is a professor of computer science at the
University of Massachusetts Amherst and codirector of its
Laboratory for Advanced Software Engineering Research
and the Electronic Enterprise Institute. His research centers
on software analysis and testing, software tool integration,
and software processes and process programming. Oster-
weil received a PhD in mathematics from the University of
Maryland. He is a fellow of the ACM. Contact him at ljo@
cs.umass.edu.

Ina Schieferdecker heads the Competence Center on
Modeling and Testing of System and Service Solutions
at Fraunhofer FOKUS, Berlin, and is also a professor of
design and testing of communication-based systems at
Technical University Berlin. Her research interests include
model-driven engineering, software quality assurance,
conformance, interoperability, and certification. Schief-
erdecker received a PhD in electrical engineering from
Technical University Berlin. She is a member of IEEE, the
ACM, the German Academy of Science and Engineering
(Acatech), Gesellschaft für Informatik, and ASQF. Contact
her at ina.schieferdecker@fokus.fraunhofer.de.

	 Selected CS articles and columns are available for free at
	 http://ComputingNow.computer.org.

